39 research outputs found

    Liquid gated organic devices for sensing applications: from transistors to single molecule break junctions

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design of a Portable Microfluidic Platform for EGOT-Based in Liquid Biosensing

    Get PDF
    In biosensing applications, the exploitation of organic transistors gated via a liquid electrolyte has increased in the last years thanks to their enormous advantages in terms of sensitivity, low cost and power consumption. However, a practical aspect limiting the use of these devices in real applications is the contamination of the organic material, which represents an obstacle for the realization of a portable sensing platform based on electrolyte-gated organic transistors (EGOTs). In this work, a novel contamination-free microfluidic platform allowing differential measurements is presented and validated through finite element modeling simulations. The proposed design allows the exposure of the sensing electrode without contaminating the EGOT device during the whole sensing tests protocol. Furthermore, the platform is exploited to perform the detection of bovine serum albumin (BSA) as a validation test for the introduced differential protocol, demonstrating the capability to detect BSA at 1 pM concentration. The lack of contamination and the differential measurements provided in this work can be the first steps towards the realization of a reliable EGOT-based portable sensing instrument

    Lift-off assisted patterning of few layers graphene

    Get PDF
    Graphene and 2D materials have been exploited in a growing number of applications and the quality of the deposited layer has been found to be a critical issue for the functionality of the developed devices. Particularly, Chemical Vapor Deposition (CVD) of high quality graphene should be preserved without defects also in the subsequent processes of transferring and patterning. In this work, a lift-off assisted patterning process of Few Layer Graphene (FLG) has been developed to obtain a significant simplification of the whole transferring method and a conformal growth on micrometre size features. The process is based on the lift-off of the catalyst seed layer prior to the FLG deposition. Starting from a SiO2 finished Silicon substrate, a photolithographic step has been carried out to define the micro patterns, then an evaporation of Pt thin film on Al2O3 adhesion layer has been performed. Subsequently, the Pt/Al2O3 lift-off step has been attained using a dimethyl sulfoxide (DMSO) bath. The FLG was grown directly on the patterned Pt seed layer by Chemical Vapor Deposition (CVD). Raman spectroscopy was applied on the patterned area in order to investigate the quality of the obtained graphene. Following the novel lift-off assisted patterning technique a minimization of the de-wetting phenomenon for temperatures up to 1000 °C was achieved and micropatterns, down to 10 µm, were easily covered with a high quality FL

    P3HT Processing Study for In-Liquid EGOFET Biosensors: Effects of the Solvent and the Surface

    Get PDF
    In-liquid biosensing is the new frontier of health and environment monitoring. A growing number of analytes and biomarkers of interest correlated to different diseases have been found, and the miniaturized devices belonging to the class of biosensors represent an accurate and cost-effective solution to obtaining their recognition. In this study, we investigate the effect of the solvent and of the substrate modification on thin films of organic semiconductor Poly(3-hexylthiophene) (P3HT) in order to improve the stability and electrical properties of an Electrolyte Gated Organic Field Effect Transistor (EGOFET) biosensor. The studied surface is the relevant interface between the P3HT and the electrolyte acting as gate dielectric for in-liquid detection of an analyte. Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) characterizations were employed to study the effect of two solvents (toluene and 1,2-dichlorobenzene) and of a commercial adhesion promoter (Ti Prime) on the morphological structure and electronic properties of P3HT film. Combining the results from these surface characterizations with electrical measurements, we investigate the changes on the EGOFET performances and stability in deionized (DI) water with an Ag/AgCl gate electrode

    A programmable culture platform for stimulation and in situ sensing of lung epithelial cells

    Get PDF
    A programmable dynamic cell culture chamber compatible with a standard multi-well plate was designed and characterized. The system is integrated with an array of OECT biosensors, in view of an in-situ monitoring of the dynamic cultures

    The fabrication of Schottky photodiode by monolayer graphene direct-transfer-on-silicon

    Get PDF
    A two-step hot embossing process was used to transfer graphene and to fabricate Gr/Si Schottky photodiodes. As a direct graphene transfer technique through a hot embossing system, chemical vapor deposition Gr monolayer was transferred from copper foil to cyclic olefin copolymer foil without a poly(methylmethacrylate) sacrificial layer. Then, hot embossing was employed once again to bond graphene with the prepared Si substrate to form Schottky contact. Electrical and photoelectrical characterizations have been performed to evaluate the Schottky photodiode. The photocurrent increases linearly with light intensity under 633 nm illumination. With an appropriate bias voltage, the maximum responsivity reaches 0.73 A/W. Extracted from I–V characteristics by Cheung’s function, the Schottky barrier height and ideality factor are 1.01 eV and 2.66, respectively. The experimental result shows the feasibility and effectiveness of this hot embossing fabrication process, which demonstrates the opportunity for large scale production and provides a new approach for graphene optoelectronics
    corecore